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1. Abstract

Branching-ratio limits obtained with the Crystal Box detector are presented for
the rare muon decays v + eee~ M + ey~ and u + ew. These decays? vhich violate
the conservation of separate lepton-family numbers, are expected to occur In many
extensions to the standard model. We found no candidates for the decay v + eee,
yielding an upper limit for the branching ratio of ~3e < 3*1 x 10-11 (90% COL.).
A maximum-likelihood analwis of the u + ev candidates Yields ●n upper limit of

h < 4.9 x 10-11 and ●n-analogous analysls of v + eyy-
l:tof~ < 7.2 X 10-11. These results strengthen
that ●llov ~~nsitions betveen lepton families.

2. Introduction

candidates gives an upper
the constraints on models

The muon has been an ●nigma since its discovery. Originally mistaken for the
pion, it behaves ●s if it vere a heavy electron. The only known decay mode of
the muon is v + ● Q (and its radiative correction). Wny ●xperiments haw

>!searched for lepto - amily-nonconserving decays such as v + ●y, M + 3e, and
v + ●yy. Figure 1 shovs hov the limits for these decays have been steadily
improved. The ●bsence of tha deeay v + ●y led to the discovery of separate muon
and ●lectron neutrinos ●nd to the hypothesis of separate conserved quantum
numbers for ●lectrons ●nd muons. Recently it has become videly ●ccepted that be-
caus~ lepton number does not relate to ● space-time symmetry ●s do ●nergy ●nd mo-
mentum conservation, nor is it associated vith a massless gauge boson$ ●s is
electric charge? there is no reason to think it is ● conserved quantity. The
standard mdel[l] has been vqry successful but it does not address the question
of lepton number. Because the standard model is incomplete, many ●xtensions have
been considered and several of these can lead to lepton-family nonconserva-
tion, [2] The ●xisting ●xperimental upper limits[3-5] impose model-dependent con-
straints on the theoretical parameters? like mixing ●ngles or gaug--boson masses~
that describe such processes. In general, there ●re too many free parameters In
these theories to predict ●bsolute decay rates, Hovever, they frequently predict
the ratios of rates for these decays. It is important for ●xperiments to consid-
●r ●ll channels because it is impossible to predict in vhich decay mode lepton-
numbor nonconservation vill first be seen.
——
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Fig. 1 Branching ratio limits for
rare muon decays versus the year of
the measurement

3* Detector and Data Acquisition

Fig. 2 The Crystal Box detector

The Crystal Box detector,:o] shown in Fig. 2, is located at the Stopped Huon
Channel of LAIIPF. A large (6.7-cm effective radius), thin (52 mg/cm2)
polystyrene target stops 26 MeV/c positive muons. Surrounding the target is a
728-cell, eight-plane, l~:ge-stereo-angle drift chamber,[7] which determines the
three dimensional trajectories of charged particles. The drift chamber is
surrounded by a 36-section plastic scintillator hodoscope, which provides dis-
crimination between chargsd and neutral particles ●nd timing resolution for
charged particles of 290 ps (FVHH). Energy information is provided by ● large-
solid-angle 396-element NaI(TQ) array. Ninety crystals form ●ach of four
quadrants and nine crystals are arranged In each corner between two quadrants.
The detector has an ●nergy resolution of -8X FWH ●t 50 HeV for both positrons
and photons, ●nd ● timing resolution of 1.2 ns for photons. The position resolu-
tion of the origin of a charged particle on the target is 2 mm. The photon con-
version point is determined to 4.1 cm from ●nergy sharing between NaI crystals.

The ●bsolute gain of ●ach NaI crystal was set to 10% using ● Pu-u+e s~urce
(4.43 FleV Y) ●nd calibrated using photons from the reactions K-p +nn (n +YY)
(55 SE <83HeV) and n-p+ ny(Ey= 129.4 Ml). The pion data were taken with
a liqui~-hydrogen target replacing the drift chamber. The gain stability of each
NaI channel was ❑onitored ●very two hours using ● Xe flashtube ●nd fiber optics
cables connected to ●ach photomultiplier and by the ●rid-point of the positron
●nergy distribution from normal v decay,

The sensitivity limit of $ rare P decay ●xperiment is determined by the number
of u decays ●xamined and by how veil the backgrounds ●re identified or
suppressed. The sources of background are random coincidences betveen poritrons
from normal u decay ●nd bremsstrahlung photons, and the prompt processes
M + ~eev9, p + ●yW, and p + ●yyW, Random coincidences dominate the background
for the Crystal Box in ●ll three decay modes. flovevar, for the ●y mode the
prompt background contributes ●bout 10%. To identify ● rare decay ●vent the
●nergy~ time? ●nd position r~solutions of the detector must be ●dequate to show
that the particles ●re in time, that the total ●nergy is ●qual to that of the
muon? ●nd that the vector sw of the aomenta is zero, In ●ddition, for 3e
●vents, ●ll tracka must have ● conswn origin on the target,

The data ●cquisition system collected candidate. for ●ll thre~ decay modes
simultaneously * The triager defined ● ‘positron quadrantw ●s ● signal in ● hodo-
scope scintillator vith mora than 5 UeV of ●ner~ in ● crystal in one of the
three rovm of crystals directly behind the scintillator vithin 15 ns of the hodo-
scope signcl. A ‘photon quadrentm vas defined by requiring ●nergy in the NaI



with no scintillator firing within 20 ns in front of it, or in the nearest scin-
tillator in the adjacent two qvsdrants. The 3e trigger required that there be
signals in three non-adjacent plastic scintillators, that the scintillators be in

. a geometric pattern cinematically consistent with a 3e decay, and that three
scintillators fire within 5 ns of ●ach other. The ●y trigger required a coinci-
dence vithin *5 ns of a positron in one quadrant ●nd the opposite photon
quadrant, and that each have an NaI energy greater than 30 14eV. The ●+n trigger
required a time coincidence vithin t12 ns of a positron quadrant and tvo photon
quadrants, vith at least 70 HeV deposited in the NaI calorimeter. These trigger
requirements generated a trigger rate of about 20 Hz vith 7.7 MHz instantaneous
of muons stopping in the target at a 7% duty factor (500 kllz average).

The trigger generated a signal to start all the TM’s, a gate for the ADC’s,
and a start signal for the readout of the ●vent. For each event all the scintil-
lator AM and TDCdata vere recorded. Distributed processors performed a sparse
data scan for the drift-chamber TDC information and the NcI pulse-height and tim-
ing information. In addition, a second ADCvith a different gate vas used on the
NaI crystals to detect pileup. A computer acquired and filtered the ●vents by
making on-line cuts before taping the data.

Approximately 1W-107 ●vents vere recorded for each trigger from 1.2 x 1(P2
muons that vere stopped. About 30% of the data vere taken vithout benefit of the
additional ADCsystem to reject piledp in the NaI. All the data vere processed
by a multistage filtering process. The data remaining after the first tvo passes
consisted of 10’-10’ events in ●ach of the data streams. These vere carefully
investigated to look for ● prompt signal and any candidates for lepton-family-
nonconserving decays.

4* u + ey Analysis

The data sample containing possible@v + ey events consistad of 17 073 ●vents
satisfying lAteYl < 5 ns, eey Z 160 S Ee L 440HeV~ ●nd Ey Z 40 HeV. b ideal
M + ey ●vent vould have lAt I - 0, e = 180 , and Be = E = 52.8 MeV. Fig. 3a
shovs At the photon-posi?~on relat~~e timing, for ● sub~et of these events.
The broa$y~istrlbutioro is due to random coincidences, vhile the prompt peak Is
due to V+ + ●+vGy ●nd

The number of each
the likelihood

possible V+ + ●+y ●vents.

component in the data sample vas determined by maximizing

Fig. 3 Sp~ctra for ●ach tif the
quantities used in tha v +er
data ●nalysia

Fig. 4 The likdihood function versus
tha numbar of v + ●y and p + ●yW
in th~ data
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r events. The vector ? had components eey,+Ate :e, and E . P, Q, and R were the
probability distributions ~or p+ +e+y, M + ~JVVY, and r~dom events, respec-
tively. The distributions for P and Q and the acceptance of the apparatus vere8
determined with a Ronte Carlo simulation, based en the shower code EGS3,[8] that
accurately reproduced the response of the detector to photons and positrons.

Fig. 4 shows the normalized likelihood function. It peaks at n = O and
= 3470 * 80 t 300 events.‘v +

The latter agrees well with the 39~~ t 90 t 200
v + e my events expected in the data. The likelihood function distribution
implies ne < 11 events (90% C.L.). Using the number of muons stopped, the
apparatus Acceptance for u+ + e+y, 0.305, and th{l detection efficiency, 0.613, we
obtain Be < 4.9 x 10-11. Fig. 3 shows the agremnent betveen the data
(histograXrned) and the best mix ofu + + e+v5y and randoms (smooth curve) as de-
termined by the likelihood analysis.

5. IJ + eyy Analysis

The number of events surviving the first analysis from the eyy trigger vas
41 656; an additional 068 candidates vere found in the ey-triggered events, vhere
the positron and one photon occupied the same quwdrant. Fig. 5 shovs the rela-
tive timing distribution for some of these events, the majority being backgrounds
from triple random coincidences or tvo-particle prompt events in random coinci-
dence with a third particle (e.g., u+ + e+v5y + y). The cuts applied during the
data analysis removed most of the double- and triple-random coincidences vhile
retaining most of the p+ + ●+yy events, making minimal assumptions for the
IJ+ + ●+yy matrix element.[s] Events vith one particle shovering and appearing as
tvo hits in the trigger in coincidence vith another particle were removed by
●nergy cuts.

The number of M+ + ●+yy ●vents in the remaining sample of nine wents vas
estimated by maximizing the likelihood

N
L(neW) = II

[
‘R R(ti)>W P(?i) + ~

i-l 1
with respect to the parameters n andnR-N-n that ●stimated the number
of M+ + ●+yy and background ●ven !~Yinth samleoyfi events. The components of
?vere Etot, r=2te-ti-t2, p \~= ]$a+%b+ cxpb! and co~aw # “fiab,
vhere #a and ~ vere tie mom~nta ost nearly perp nd?cular to ●ach o~er~ Pab

!vas the unit vec or normal to the p ‘pb plane? and 8 was the third particle’s
momentum, P ●nd R vere the probability distribution~ for IJ+ + ●+yy ●nd back-
ground, respectively. Th@140nte Carlo program gave the distributions for P and
tho distributions for R were taken from data vith ~ @ 0.

4, 4

– ; “’ - ‘1
N b 1

t (ns)
● - ‘Yl

Fig. 5 Timing scatter plot for Fig. 6 Maximum likelihood fcw
p -b ●yy dBta M * QW candidates



The likelihood function distribution in Fig, 6 implies n. < 2.9 (90X C.L.).
Using the number of muons stopped, the apparatus acceptance urP++e+rt, 0.064,
and the detector ●fficiency, 0.524, we obtain Ben < 7.2 % 10-11 (90% C.L.).

6. -

The results of tha ●xperiment for the three decay ❑odes are ●s follovs!

Ve conclude that thero is no ●violence for nonconacrvation of lopton family
number. A3 ●xamples of theoretical constraints imposed by our result, we show
hov these new values of

%e~ and %e
limit the parameters in a fev models.

Using the formula of Tomo a a[lO] o~the mass of the constituents of muons and
●lectrons, vhere the ❑uon is taken to be a 2S ●xcited state of th~ ●lectron,
can be combined vith Eje %?Xto yield a lower limit on the ❑ass of the constitue
of 7.15 x 107 GeV. In ●~omposite model[ll] basad on the inclusion of heavy
vector weak isodoublats, IJ + ●y constrains the ●ass scale of the heavy leptons to
be A> 2.4 x l@ TQV. In suparsymmetric theories,[12] where tha symmetry is
broken by gravity, [13] th~ mass of the supersymmetric partner of the muon must be
greater than 36 GeV. A ❑odel[14] based on 0(18) that contains the standard ❑odel
and ● discrete family symm~try with four generations includes massive neutrinos
vith ma s less than 40 GoV.3 Taking the ●stimate that the mixing ●ngle with ● ●nd
P iS Ie eel - lo-~, tho limit on u + QYconstrains the neutrino mass to ba ●t
the uppe~ end of its range: HN> 40 GeV. An effective Lagrangian analysis of
possible deviations from tii~ standard model shovs that unless there ●re unnatural
suppressions, u + ey provides a stringent limit on the scale of n-~Y4interactions
of A - 104 T*V. [IS] In ●ll cases, the ❑ass limits vary as [yeY] .
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